【LeetCode】70. Climbing Stairs 解題報告
70. Climbing Stairs / Easy
You are climbing a staircase. It takes n steps to reach the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Example 1:
Input: n = 2
Output: 2
Explanation: There are two ways to climb to the top.
- 1 step + 1 step
- 2 steps
Example 2:
Input: n = 3
Output: 3
Explanation: There are three ways to climb to the top.
- 1 step + 1 step + 1 step
- 1 step + 2 steps
- 2 steps + 1 step
Constraints:
- 1 <= n <= 45
Solution
思路
爬梯子這題是很經典的 DP 題目,適合用來理解 DP 的概念。
每次只能爬 1 階或 2 階,意思就是如果要爬到第 3 階,只要能夠爬到第 1 階或第 2 階就可以了。
至於幾種爬法,只要將前兩階的爬法加起來就是現在這階的爬法數量。
也就是說,狀態轉移方程式為dp[i] = dp[i-1] + dp[i-2]
而初始狀態則是第 1 與第 2 階,都是一種爬法。
效能
Complexity
- Time Complexity: O(N)
- Space Complexity: O(N)
LeetCode Result
- Runtime: 0 ms
- Memory Usage: 6.3 MB
- https://leetcode.com/submissions/detail/732186624/
Code
1 | class Solution { |