【LeetCode】70. Climbing Stairs 解題報告

70. Climbing Stairs / Easy

You are climbing a staircase. It takes n steps to reach the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Example 1:

Input: n = 2
Output: 2
Explanation: There are two ways to climb to the top.

  1. 1 step + 1 step
  2. 2 steps

Example 2:

Input: n = 3
Output: 3
Explanation: There are three ways to climb to the top.

  1. 1 step + 1 step + 1 step
  2. 1 step + 2 steps
  3. 2 steps + 1 step

Constraints:

  • 1 <= n <= 45

Solution

思路

爬梯子這題是很經典的 DP 題目,適合用來理解 DP 的概念。
每次只能爬 1 階或 2 階,意思就是如果要爬到第 3 階,只要能夠爬到第 1 階或第 2 階就可以了。
至於幾種爬法,只要將前兩階的爬法加起來就是現在這階的爬法數量。
也就是說,狀態轉移方程式為
dp[i] = dp[i-1] + dp[i-2]
而初始狀態則是第 1 與第 2 階,都是一種爬法。

效能

Complexity

  • Time Complexity: O(N)
  • Space Complexity: O(N)

LeetCode Result

Code

1
2
3
4
5
6
7
8
9
10
11
class Solution {
public:
int climbStairs(int n) {
vector<int> dp(n+1, 0);
dp[0] = 1; dp[1] = 1;
for(int i = 2; i <= n; ++i) {
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
};